Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The role of iron in magnetic damping of Mg(Al,Fe)2O4 spinel ferrite thin films

Published Web Location

We have investigated magnesium aluminum ferrite thin films with a range of iron concentrations and identified the optimal iron content to obtain high crystalline quality thin films with the low magnetic damping required for spin current-based applications. Epitaxial MgAl 2-x FexO4 films with 0.8 < x < 2.0 were grown by pulsed laser deposition on single crystal MgAl2O4 substrates and were characterized structurally and magnetically. We find that the x = 1.5 composition minimizes the room-temperature magnetic damping with a typical Gilbert damping parameter of α eff = 1.8 × 10-3. This minimized damping is governed by a competition between the more robust magnetic ordering with increased iron content, x, and the more defective structure due to larger film-substrate lattice mismatch with increased iron content. The temperature-dependent magnetization curves indicate that Tc is suppressed below room temperature for iron content x ≤ 1.2 and eventually suppressed entirely for x = 0.8. X-ray magnetic circular dichroism results indicate that for all x the magnetic moment is dominated by Fe 3 + cations distributed in a 60:40 ratio on the octahedral and tetrahedral sites, with minimal contribution from Fe 2 + cations. Films with x = 1.4-1.6 exhibit very strong ferromagnetic resonance and low Gilbert damping with α eff = (1.8-6) × 10-3, making them ideal candidates for microwave and spintronic applications.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View