Skip to main content
Open Access Publications from the University of California

Interaction of the westerlies with the Tibetan Plateau in determining the Mei-Yu termination

  • Author(s): Kong, W;
  • Chiang, JCH
  • et al.

This study explores how the termination of the mei-yu is dynamically linked to the westerlies impinging on the Tibetan Plateau. It is found that the mei-yu stage terminates when the maximum upper-tropospheric westerlies shift beyond the northern edge of the plateau, around 408N. This termination is accompanied by the disappearance of tropospheric northerlies over northeastern China. The link between the transit of the jet axis across the northern edge of the plateau, the disappearance of northerlies, and termination of the mei-yu holds on a range of time scales from interannual through seasonal and pentad. Diagnostic analysis indicates that the weakening of the meridional moisture contrast and meridional wind convergence, mainly resulting from the disappearance of northerlies, causes the demise of the mei-yu front. The authors propose that the westerlies migrating north of the plateau and consequent weakening of the extratropical northerlies triggers the mei-yu termination. Model simulations are employed to test the causality between the jet and the orographic downstream northerlies by repositioning the northern edge of the plateau. As the plateau edge extends northward, orographic forcing on the westerlies strengthens, leading to persistent strong downstream northerlies and a prolonged mei-yu. Idealized simulations with a dry dynamical core further demonstrate the dynamical link between the weakening of orographically forced downstream northerlies with the positioning of the jet from south to north of the plateau. Changes in the magnitude of orographically forced stationary waves are proposed to explain why the downstream northerlies disappear when the jet axis migrates beyond the northern edge of the plateau.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View