- Main
Sparse ACEKF for phase reconstruction.
Published Web Location
https://doi.org/10.1364/oe.21.018125Abstract
We propose a novel low-complexity recursive filter to efficiently recover quantitative phase from a series of noisy intensity images taken through focus. We first transform the wave propagation equation and nonlinear observation model (intensity measurement) into a complex augmented state space model. From the state space model, we derive a sparse augmented complex extended Kalman filter (ACEKF) to infer the complex optical field (amplitude and phase), and find that it converges under mild conditions. Our proposed method has a computational complexity of N(z)N logN and storage requirement of O(N), compared with the original ACEKF method, which has a computational complexity of O(NzN(3)) and storage requirement of O(N(2)), where Nz is the number of images and N is the number of pixels in each image. Thus, it is efficient, robust and recursive, and may be feasible for real-time phase recovery applications with high resolution images.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-