Skip to main content
eScholarship
Open Access Publications from the University of California

Physics Department

UC Santa Cruz

Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Santa Cruz Department of Physics researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton-proton collisions at s=13  TeV with the ATLAS detector

(2024)

A search for heavy right-handed Majorana neutrinos is performed with the ATLAS detector at the CERN Large Hadron Collider, using the 140  fb−1 of proton–proton collision data at s=13  TeV collected during Run 2. This search targets tt¯ production, in which both top quarks decay into a bottom quark and a W boson, where one of the W bosons decays hadronically and the other decays into an electron or muon and a heavy neutral lepton. The heavy neutral lepton is identified through a decay into an electron or muon and another W boson, resulting in a pair of same-charge same-flavor leptons in the final state. This paper presents the first search for heavy neutral leptons in the mass range of 15–75 GeV using tt¯ events. No significant excess is observed over the background expectation, and upper limits are placed on the signal cross sections. Assuming a benchmark scenario of the phenomenological type-I seesaw model, these cross section limits are then translated into upper limits on the mixing parameters of the heavy Majorana neutrino with Standard Model neutrinos. © 2024 CERN, for the ATLAS Collaboration 2024 CERN

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Cover page of Deep Generative Models for Fast Photon Shower Simulation in ATLAS

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Search for R-parity violating supersymmetric decays of the top squark to a b-jet and a lepton in s=13 TeV pp collisions with the ATLAS detector

(2024)

A search is presented for direct pair production of the stop, the supersymmetric partner of the top quark, in a decay through an R-parity violating coupling to a charged lepton and a b-quark. The dataset corresponds to an integrated luminosity of 140  fb−1 of proton-proton collisions at a center-of-mass energy of s=13  TeV collected between 2015 and 2018 by the ATLAS detector at the LHC. The final state has two charged leptons (electrons or muons) and two b-jets. The results of the search are interpreted in the context of a Minimal Supersymmetric Standard Model with an additional B−L gauge symmetry that is spontaneously broken. No significant excess is observed over the Standard Model background, and exclusion limits on stop pair production are set at 95% confidence level. The corresponding lower limits on the stop mass for 100% branching ratios to a b-quark and an electron, muon, or tau-lepton are 1.9 TeV, 1.8 TeV and 800 GeV, respectively, extending the reach of previous LHC searches. © 2024 CERN, for the ATLAS Collaboration 2024 CERN

Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton–proton collisions at s = 13 TeV with the ATLAS detector

(2024)

Search for the Exclusive W Boson Hadronic Decays W±→π±γ, W±→K±γ and W±→ρ±γ with the ATLAS Detector

(2024)

A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140  fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13  TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products. The search results in the most stringent upper limits to date on the branching fractions B(W^{±}→π^{±}γ)<1.9×10^{-6}, B(W^{±}→K^{±}γ)<1.7×10^{-6}, B(W^{±}→ρ^{±}γ)<5.2×10^{-6} at 95% confidence level.

Search for Light Long-Lived Particles in pp Collisions at s=13 TeV Using Displaced Vertices in the ATLAS Inner Detector

(2024)

A search for long-lived particles (LLPs) using 140  fb^{-1} of pp collision data with sqrt[s]=13  TeV recorded by the ATLAS experiment at the LHC is presented. The search targets LLPs with masses between 5 and 55 GeV that decay hadronically in the ATLAS inner detector. Benchmark models with LLP pair production from exotic decays of the Higgs boson and models featuring long-lived axionlike particles (ALPs) are considered. No significant excess above the expected background is observed. Upper limits are placed on the branching ratio of the Higgs boson to pairs of LLPs, the cross section for ALPs produced in association with a vector boson, and, for the first time, on the branching ratio of the top quark to an ALP and a u/c quark.

Cover page of Quantifying the topology of magnetic skyrmions in three dimensions.

Quantifying the topology of magnetic skyrmions in three dimensions.

(2024)

Magnetic skyrmions have so far been treated as two-dimensional spin structures characterized by a topological winding number. However, in real systems with the finite thickness of the device material being larger than the magnetic exchange length, the skyrmion spin texture extends into the third dimension and cannot be assumed as homogeneous. Using soft x-ray laminography, we reconstruct with about 20-nanometer spatial (voxel) size the full three-dimensional spin texture of a skyrmion in an 800-nanometer-diameter and 95-nanometer-thin disk patterned into a 30× [iridium/cobalt/platinum] multilayered film. A quantitative analysis finds that the evolution of the radial profile of the topological skyrmion number is nonuniform across the thickness of the disk. Estimates of the micromagnetic energy densities suggest that the changes in topological profile are related to nonuniform competing energetic interactions. Our results provide a foundation for nanoscale metrology for spintronics devices using topology as a design parameter.

Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

(2024)

The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140  fb−1 of proton-proton collision data at s=13  TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration 2024 CERN