Light environments critically impact species that rely on vision to survive and reproduce. Animal visual systems must accommodate changes in light that occur from minutes to years, yet the mechanistic basis of their response to spectral (color) changes is largely unknown. Here, we used a laboratory experiment where replicate guppy populations were kept under three different light environments for up to 8-12 generations to explore possible differences in the expression levels of nine guppy opsin genes. Previous evidence for opsin expression-light environment "tuning" has been either correlative or focused exclusively on the relationship between the light environment and opsin expression over one or two generations. In our multigeneration experiment, the relative expression levels of nine different guppy opsin genes responded differently to light environment changes: some did not respond, while others differed due to phenotypic plasticity. Moreover, for the LWS-1 opsin we found that, while we observed a wide range of plastic responses under different light conditions, common plastic responses (where the population replicates all followed the same trajectory) occurred only after multigenerational exposure to different light environments. Taken together this suggests that opsin expression plasticity plays an important role in light environment "tuning" in different light environments on different time scales, and, in turn, has important implications for both visual system function and evolution.