Although a relationship between poor self-reported health status and excess mortality risks has been well-established for industrialized countries, almost no research considers developing countries. We use data from Indonesia to show that in a low-income setting, as in more advantaged parts of the world, individuals who perceive their health to be poor are significantly more likely to die in subsequent follow-up periods than their counterparts who view their health as good. This result characterizes both men and women, holds for multiple time periods, and remains after inclusion of measures of nutritional status, physical functioning, symptoms of poor physical health and depression, and hypertension. We also consider the correlates of self-rated health. Symptoms and physical functioning are strong predictors of reporting poor rather than good health, but neither these indicators nor other covariates we consider distinguish between reports of excellent rather than good health.
Water quality impairment and land surface subsidence threaten the viability of the Sacramento–San Joaquin Delta (Delta), a critical component of California’s water conveyance system. Current-day irrigation drainage through Delta island peat soils affects drinking water treatment and is linked to mercury transport, potentially posing both ecological and public health concerns. To cost-effectively treat agricultural drainage water from subsided Delta islands to reduce the export of drinking Water Quality Constituents of Concern and mitigate land subsidence through accretion, we studied hybrid coagulation-treatment wetland systems, termed Chemically Enhanced Treatment Wetlands (CETWs). We provide cost estimates and design recommendations to aid broader implementation of this technology. Over a 20-year horizon using a Total Annualized Cost analysis, we estimate treatment costs of $602 to $747 per acre-foot (ac‑ft) water treated, and $36 to $70 per kg dissolved organic carbon (DOC) removed, depending upon source water DOC concentrations for a small 3-acre CETW system. For larger CETW systems scaled for island sizes of 3,500 to 14,000 acres, costs decrease to $108 to $239 per ac-ft water treated, and $11 to $14 per kg DOC removed. We estimated the footprints of CETW systems to be approximately 3% of the area being treated for 4-day hydraulic retention time (HRT) systems, but they would decrease to less than 1% for 1-day HRT systems. CETWs ultimately address several of the Delta’s key internal issues while keeping water treatment costs competitive with other currently available treatment technologies at similar scales on a per-carbon-removed basis. CETWs offer a reliable system to reduce out-going DOC and mercury loads, and they provide the additional benefit of sediment accretion. System costs and treatment efficacy depend significantly on inflow source water conditions, land availability, and other practical matters. To keep costs low and removal efficacy high, wetland design features will need site-specific evaluation.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.