This study investigates the consequences of the human foraging niche and multiple dependent offspring on the optimal growth trajectory of humans. We test the hypothesis that the human pattern of slow human growth between age at weaning and puberty helps defer the compound energetic demand on parents with multiple dependents, by using growth and demographic data from two foraging societies, the Ache of eastern Paraguay and the Dobe Ju/'hoansi of Botswana and Namibia. We run simulations of observed and potential growth trajectories among sub-adults and their consequent energetic demands on parents given profiles of fertility, mortality, consumption and production. We find that either sub-adult production or food subsidies from other people must substantially increase in order to compensate for the dramatic increase in energetic demand on parents if offspring were to grow faster at younger ages. Our conclusion is that slow human growth followed by a rapid adolescent growth spurt may have facilitated rising human fertility rates and greater investments in neural capital.
One of the key challenges in computational biology is prediction of three-dimensional protein structures from amino-acid sequences. For most proteins, the "native state" lies at the bottom of a free-energy landscape. Protein structure prediction involves varying the degrees of freedom of the protein in a constrained manner until it approaches its native state. In the Rosetta protein structure prediction protocols, a large number of independent folding trajectories are simulated, and several lowest-energy results are likely to be close to the native state. The availability of hundred-teraflop, and shortly, petaflop, computing resources is revolutionizing the approaches available for protein structure prediction. Here, we discuss issues involved in utilizing such machines efficiently with the Rosetta code, including an overview of recent results of the Critical Assessment of Techniques for Protein Structure Prediction 7 (CASP7) in which the computationally demanding structure-refinement process was run on 16 racks of the IBM Blue Gene/L (TM) system at the IBM T. J. Watson Research Center. We highlight recent advances in high-performance computing and discuss,future development paths that make use of the next-generation petascale (> 10(12) floating-point operations per second) machines.
The results of imaging experiments using biconcave, spherical compound refractive lenses (CRLs) and a wide-bandwidth thermal neutron beam are presented. Two CRLs were used, consisting of 155 beryllium and 120 copper lenses. The experiments were performed using a thermal neutron beam line at McClellan Nuclear Radiation Center reactor. The authors obtained micrographs of cadmium slits with up to 5× magnification and 0.3 mm resolution. The CRL resolution was superior to a pinhole camera with the same aperture diameter. The modulation transfer function (MTF) of the CRL was calculated and compared with the measured MTF at five spatial frequencies, showing good agreement. ©2007 American Institute of Physics
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.