Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Identification and phylogenetic analysis of RNA binding domain abundant in apicomplexans or RAP proteins.


The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organisms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the C-terminal region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an ⍺/β structure of a restriction endonuclease-like fold. The phylogenetic trees generated from multiple alignment of RAP domains and full-length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View