Skip to main content
eScholarship
Open Access Publications from the University of California

Inverse Biot-Savart Optimization for Superconducting Accelerator Magnets

Abstract

Superconducting (SC) magnets for accelerator concepts are often synthesized by numerically optimizing magnetic field waveforms, a process that requires a subsequent solution of a constrained inverse problem to identify suitable SC magnet windings. When the desired field distribution is intuitive, the inverse process is facilitated by seeding preconceived coil distributions into design optimization methods for refinement. With more complex magnetic field distributions, an initial design may be unknown, and topology optimization tools are required to synthesize current distributions without a priori guidance from a subject matter expert. In this work, we develop a constrained inverse Biot-Savart topology optimization methodology that synthesizes optimal distributions of current density in racetrack-like SC coils. The problem structure is exploited through a computationally efficient quadratic programming formulation, and the method is applied to recently published magnetic field waveforms for a recirculating proton phase shifter, a proton therapy gantry, and dipole magnets with sharp field transitions. The method and results herein identify novel winding configurations that can help magnet designers bring accelerator concepts to fruition.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View