Skip to main content
Open Access Publications from the University of California

Frontiers of Biogeography

Frontiers of Biogeography bannerUC Merced

Is habitat conversion likely to impede the ability of bird species to track changing climate?


As climate changes, species’ ranges may shift poleward. However, habitat loss in intervening areas has been hypothesized potentially to impede the movements of these species. Populations near range margins offer opportunities to study how marginal species have reacted to habitat loss. We examined the presence/absence of bird species in landscapes that were historically mainly forested (natural land covers) in Southern Ontario, Canada. We used logistic regression to determine each bird species’ probability of occupancy (pocc) as a function of natural cover in 991 landscapes, each 100-km2. We distinguished three groups of species: i) southerly species whose northern range limits fall in the study area (n=37), ii) northerly species whose southern range limits fall in the study area (n=35), and iii) mid-range species (n=106). We compared pocc for these three groups of species in six different habitat guilds. We found that species near their southern range edges are less likely to occur in landscapes where forest amount is reduced, while species near their northern range edge are more likely to occur in landscapes with reduced forest. This result is independent of habitat guild. Our results are inconsistent with the hypothesis in the climate change literature proposing that loss of natural land cover near poleward range margins would inhibit range expansion in response to climatic warming. Rather, we hypothesize that, at southern range edges, the dual stresses of climatic warming and forest conversion both reduce species’ ability to occupy a landscape. However, near northern (potentially expanding) range edges, partially disturbed landscapes are more readily invaded than undisturbed landscapes.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View