Skip to main content
eScholarship
Open Access Publications from the University of California

The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis–Menten–Monod Kinetics

  • Author(s): Maggi, F
  • Fiona, FH
  • Riley, WJ
  • et al.

Published Web Location

https://doi.org/10.1002/kin.21163
Abstract

© 2018 Wiley Periodicals, Inc. Accurate prediction of the temperature response of the velocity v of a biochemical reaction has wide applications in cell biology, reaction design, and biomass yield enhancement. Here, we introduce a simple but comprehensive mechanistic approach that uses thermodynamics and biochemical kinetics to describe and link the reaction rate and Michaelis–Menten constants (kTand KT) with the biomass yield and mortality rate (YTand δT) as explicit functions of T. The temperature control is exerted by catabolic enthalpy at low temperatures and catabolic entropy at high temperatures, whereas changes in cell and enzyme–substrate heat capacity shift the anabolic electron use efficiency eAand the maximum reaction velocity vmax. We show that cells have optimal growth when the catabolic (differential) free energy of activation decreases the cell free energy harvest required to duplicate their internal structures as long as electrons for anabolism are available. With the described approach, we accurately predicted observed glucose fermentation and ammonium nitrification dynamics across a wide temperature range with a minimal number of thermodynamics parameters, and we highlight how kinetic parameters are linked to each other using first principles.

Main Content
Current View