Skip to main content
Open Access Publications from the University of California

Using solar availability factors to adjust cool-wall energy savings for shading and reflection by neighboring buildings


The extent to which a solar-reflective “cool” wall can reduce a building's cooling load in summer or increase its heating load in winter scales with the wall's incident solar radiation, or solar availability. We assess how the solar availability at the wall of a central (modeled) building is affected by a neighboring wall across an urban canyon by calculating the central wall's solar availability factor (SAF), defined as the ratio of sunlight incident on the central wall in the presence of the neighboring wall to that incident in the absence of the neighboring wall. Cool-wall heating, ventilation, and air conditioning (HVAC) energy savings simulated for an isolated central building (no neighbors) can be multiplied by SAFs to account for interactions with neighboring walls. Monthly values of SAF were evaluated in 17 climates across the United States, including three in California, for north, east, south, and west central walls, over a wide range of canyon aspect ratio (height/width). Results for four representative aspect ratios—0.2, 1, 2, and 10—are presented. In Fresno, CA, monthly SAF ranges from 0.90 to 0.96 for central walls facing north, east, south, or west when the aspect ratio is 0.2 (two-story single-family homes across a street) and both the central and neighboring walls are conventional (albedo 0.25). Monthly SAFs decrease as aspect ratio rises, falling to 0.06–0.24 at an aspect ratio of 10 (adjacent 10-story buildings on the same side of the street). An example worked for a two-story single-family home in Fresno on the west side of a residential street yields SAFs of 0.47 (north), 0.92 (east), 0.50 (south), and 0.63 (west) to apply to the cool-wall annual HVAC energy savings computed for an isolated central building. Shading and reflection reduce the home's annual HVAC energy cost savings by 31%.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View