Skip to main content
Download PDF
- Main
Connected components of attractors and other stable sets
Abstract
Let f be a continuous map on a locally connected metric space. If A is an attractor in the sense of C. Conley then f permutes its components, and if A is indecomposable the permutation is cyclic. If Y is an indecomposable stable invariant set with infinitely many components, the action of f on them is a generalized adding machine, and it has no periocic orbits in Y.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.