Skip to main content
Open Access Publications from the University of California

Conformal High-K Dielectric Coating of Suspended Single-Walled Carbon Nanotubes by Atomic Layer Deposition.

  • Author(s): Kemelbay, Aidar;
  • Tikhonov, Alexander;
  • Aloni, Shaul;
  • Kuykendall, Tevye R
  • et al.

As one of the highest mobility semiconductor materials, carbon nanotubes (CNTs) have been extensively studied for use in field effect transistors (FETs). To fabricate surround-gate FETs- which offer the best switching performance-deposition of conformal, weakly-interacting dielectric layers is necessary. This is challenging due to the chemically inert surface of CNTs and a lack of nucleation sites-especially for defect-free CNTs. As a result, a technique that enables integration of uniform high-k dielectrics, while preserving the CNT's exceptional properties is required. In this work, we show a method that enables conformal atomic layer deposition (ALD) of high-k dielectrics on defect-free CNTs. By depositing a thin Ti metal film, followed by oxidation to TiO2 under ambient conditions, a nucleation layer is formed for subsequent ALD deposition of Al2O3. The technique is easy to implement and is VLSI-compatible. We show that the ALD coatings are uniform, continuous and conformal, and Raman spectroscopy reveals that the technique does not induce defects in the CNT. The resulting bilayer TiO2/Al2O3 thin-film shows an improved dielectric constant of 21.7 and an equivalent oxide thickness of 2.7 nm. The electrical properties of back-gated and top-gated devices fabricated using this method are presented.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View