- Main
Presence of depolarization-induced suppression of inhibition in a fraction of GABAergic synaptic connections in rat neocortical cultures
Abstract
Brief depolarization of postsynaptic neurons in hippocampus and cerebellum results in a transient depression of GABAergic inhibitory input, called "depolarization-induced suppression of inhibition" (DSI). We studied whether a similar phenomenon occurs in the rat neocortical neurons. Using patch-clamp technique in neocortical cell cultures, we examined the effects of a 5-second depolarization of postsynaptic neurons on evoked GABAergic inhibitory post-synaptic currents (IPSCs). We found that the depolarization evoked a suppression of IPSC amplitude in 6 out of 26 neuronal pairs tested. The suppression of IPSC amplitude lasted for approximately 70 seconds and was accompanied by changes of paired-pulse ratio and IPSC coefficient of variation (CV), which is suggestive of a presynaptic mechanism. These results are in agreement with previous observations in hippocampal cell cultures and suggest that neocortical neurons express DSI.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-