Skip to main content
eScholarship
Open Access Publications from the University of California

Magnetic triggering — time-resolved characterisation of silicon strip modules in the presence of switching DC-DC converters

Abstract

Modules for the ATLAS Inner Tracker (ITk) strip tracker include a DC-DC converter circuit glued directly to the silicon sensor which converts the 11 V supplied to the module to the 1.5 V required for the operation of the readout chips. The DC-DC converter unit, consisting of a copper solenoid and custom ASIC, is located directly above the silicon strip sensor and therefore needs to be shielded to protect the sensor from EMI noise created during the operation of the circuit. Despite dedicated shielding, consisting of an aluminium shield box with continuous solder seams encompassing the surface components and a copper layer in the PCB beneath it, module channels connected to sensor strips located beneath the converter circuit were found to show a noise increase. While the DC-DC converter unit causing the underlying EMI noise operates at a frequency of 2 MHz, module characterisation measurements for ITk strip tracker modules are typically performed asynchronously to the DC-DC switching and are therefore averaged over the full range of time bins with respect to the converter frequency. In order to investigate the time dependence of the noise injection relative to the DC-DC switching frequency, a dedicated setup to understand the time-resolved performance change in modules was developed. By using a magnetic field probe to measure the field leaking through the shield box and triggering on its rising edge, data taking could be synchronised with the DC-DC switching. This paper illustrates the concept and setup of such time-resolved performance measurements using magnetic triggering and presents results for the observed effects on signal and noise for ATLAS ITk strip modules from both laboratory and beam tests.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View