Skip to main content
eScholarship
Open Access Publications from the University of California

Level structures of Rh from gammasphere measurem ents on Cf

Abstract

Using Gammasphere data on prompt gamma rays from spontaneous fission of 252Cf, we propose energy-level schemes for 110,111,112, & 113Rh (Z=45). The fission-gamma data complement earlier studies of others on beta decay of fission products in that prompt fission gammas mainly populate yrast or near-yrast levels, while beta decay populates lower-spin levels. For the odd-A rhodium nuclei studied here, their ground bands and collective sidebands are compared with model calculations using triaxial-shaped nucleus with one odd quasi-proton. The energies and E2 transition rates are best fit by a shape slightly to the prolate side of maximum triaxiality, namely, gamma = 28 deg. The model calculations also show a K=1/2+ band with energies not in good agreement with a corresponding exerimental band. The experimental 1/2+ band is regarded as an intruder band from a prolate-driving proton orbital 1/2[431] above the Z=50 closed shell. This intruder band, seen in other odd-A Rh isotopes, is probably more deformed and prolate and would not be expected to be fit at the same triaxial shape parameter as the 7/2+ ground band. We observe a band-crossing (backbending) in the odd-A ground bands above spins of about 21/2. The odd-odd nuclei 110 and 112 Rh show mainly a single band with no backbending up to higherfrequency than the backbend in the odd-A isotopes. It is concluded that the backbend is due to alignment of a pair of h11/2 neutrons.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View