Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

An insight into space–time block codes using Hurwitz–Radon families of matrices

Abstract

It is shown that for four-transmitter systems, a family of four-by-four unit-rate complex quasi-orthogonal space–time block codes, where each entry equals a symbol variable up to a change of sign and/or complex conjugation, can be generated from any two independent codes via elementary operations. The two independent groups of codes in the family generally have different properties of diversity, but the codes in each group have the same diversity provided that the differential symbol constellation is symmetric. It is also shown that for four-transmitter systems, an eight-by-four unit-rate complex linear dispersion space–time block code can be constructed by using Hurwitz–Radon families of matrices of size eight such that diversity three is guaranteed even when all symbols are independently selected from any given constellation. This code is so far the only known unit-rate linear dispersion code that has diversity no less than three for four transmitters under any given constellation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View