Skip to main content
eScholarship
Open Access Publications from the University of California

Triggering soft bombs at the LHC

Abstract

Very high multiplicity, spherically-symmetric distributions of soft particles, with pT ∼ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such ‘soft bomb’ events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a ‘belt of fire’: a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy or lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for ‘Higgs bombs’ triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View