Skip to main content
eScholarship
Open Access Publications from the University of California

The Decovalex III Project: A Summary of Activities and Lessons Learned

  • Author(s): Tsang, Chin-Fu
  • Jing, Lanru
  • Stephansson, Ove
  • Kautsky, Fritz
  • et al.
Abstract

Initiated in 1992, the DECOVALEX project is an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical (THM) processes in geologic systems. The project has made important scientific achievements through three stages and is progressing in its fourth stage. It has played a key role in the development of mathematical modeling and in situ testing of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance for performance assessment of radioactive waste geologic repositories. This paper summarizes studies under the most recent stage of the project, DECOVALEX III (2000-2003). These studies include those of two major field experiments: (a) the FEBEX experiment at Grimsel, Switzerland, investigating coupled THM processes in a crystalline rock-bentonite system, and (b) the Drift Scale Test (DST) experiment at Yucca Mountain, Nevada, investigating coupled THM processes in unsaturated tuff. These are two of the largest multiyear heater tests undertaken to date for the study of coupled THM processes in geological systems. In addition, three so-called benchmark tests are also studied to evaluate the impact of coupled THM processes under different scenarios and geometries. Within the DECOVALEX project, multiple research teams participated in each of the studies, using different approaches and computer codes. Comparisons of results have provided insight into coupled THM processes, which in turn has stimulated further development of our modeling capabilities. Lessons learned from these studies are discussed. The scientific advances and enhanced insight gained through this kind of international cooperation illustrate the effectiveness of the DECOVALEX project.

Main Content
Current View