- Main
Warming stimulates cellulose decomposition by recruiting phylogenetically diverse but functionally similar microorganisms.
Published Web Location
https://doi.org/10.1093/ismeco/ycae152Abstract
Cellulose is the most abundant component of plant litter, which is critical for terrestrial carbon cycling. Nonetheless, it remains unknown how global warming affects cellulose-decomposing microorganisms. Here, we carried out a 3-year litterbag experiment to examine cellulose decomposition undergoing +3°C warming in a tallgrass prairie. Most cellulose-associated bacteria and fungi in litterbags were also detected in bulk soil, and bacteria in litterbags had higher community-level rrn copy numbers, larger genome sizes, and higher genome guanine-cytosine (GC) contents than those in bulk soil, implying higher growth rates. Warming stimulated soil respiration by 32.3% and accelerated mass loss of cellulose, concurring with the increase in relative abundances of most functional genes associated with carbon decomposition in litterbags. Incorporating cellulose-decomposing genes into an ecosystem model reduced model parameter uncertainty and showed that warming stimulated microbial biomass, activity, and soil carbon decomposition. Collectively, our study supports a trait-centric view since cellulose-decomposing genes or genomic traits are amenable for ecosystem modeling. By characterizing the phylogenetically diverse yet functionally similar cellulose-associated microorganisms and their responses to warming, we take a step toward more precise predictions of soil carbon dynamics under future climate scenarios.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-