Skip to main content
eScholarship
Open Access Publications from the University of California

One‐Step Thermal Gradient‐ and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells

Abstract

All-inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat-sensitive hybrid organic-inorganic counterparts. In particular, CsPbI2 Br shows the highest potential for developing thermally-stable perovskite solar cells (PSCs) among all-inorganic compositions. However, controlling the crystallinity and morphology of all-inorganic compositions is a significant challenge. Here, a simple, thermal gradient- and antisolvent-free method is reported to control the crystallization of CsPbI2 Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin-coating and annealing to understand and optimize the evolving film properties. This leads to high-quality perovskite films with micrometer-scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open-circuit voltage (VOC ) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View