Skip to main content
eScholarship
Open Access Publications from the University of California

Taxonomic and functional ecology of montane ants

  • Author(s): Bishop, Tom Rhys
  • et al.
Abstract

Why is biological diversity distributed in the way that it is? This question has been central to ecology and biogeography for centuries and is of great importance for pure and applied reasons. I use a functional trait view of ecology to complement standard sampling protocols to better understand the distribution and structure of ant (Hymenoptera: Formicidae) diversity across mountains. I use a long-term dataset of ant diversity and abundance, combined with a recently collected morphological trait dataset to examine how the alpha and beta diversity of ants responds to changes in temperature along an extensive elevational gradient in southern Africa. In addition, I link morphological thermoregulatory traits to each other and to the environment with a new database of ant elevational abundances from across the globe. Finally, I analyse how physiological thermal tolerances vary and constrain foraging patterns in montane ants. I find that temperature is a strong driver of both alpha and beta diversity patterns. In addition, morphological traits such as colour and body size are found to have a significant relationship to ambient temperatures. This relationship also implies that the relative abundances of different ant species change depending on their thermoregulatory traits (colour and body size) and the surrounding thermal environment. Furthermore, the critical thermal minimum (CTmin) of the ant species investigated and the lowest environmental temperatures are found to be key in constraining foraging activity patterns. The data presented here strengthen and link existing ideas about how thermoregulation can influence ecological communities and also suggests important ways in which diversity patterns may change in the future.

Main Content
Current View