Skip to main content
Open Access Publications from the University of California

Effects of O2 plasma and UV-O3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH4 sensors

Published Web Location Commons 'BY-SA' version 4.0 license

The authors present a comparative analysis of ultraviolet-O3 (UVO) and O2 plasma-based surface activation processes of multiwalled carbon nanotubes (MWCNTs), enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O2 plasma and UVO-based dry pretreatment techniques greatly enhance the affinity between the MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO2, deposited by the atomic layer deposition technique, were implemented as the functionalizing material following UVO and O2 plasma activation of MWCNTs. A comparative study on the relative resistance changes of O2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH4) in air is presented as well.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View