Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging
Skip to main content
eScholarship
Open Access Publications from the University of California

Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

  • Author(s): Han, H
  • Wang, S
  • Gao, K
  • Wang, Z
  • Zhang, C
  • Yang, M
  • Zhang, K
  • Zhu, P
  • et al.
Abstract

Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method is aiming to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretic ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for future precise and low-dose area density calculation method of low-Z materials.

Main Content
Current View