Skip to main content
eScholarship
Open Access Publications from the University of California

Thermal stability and muscle efficiency in hovering orchid bees (Apidae : Euglossini)

  • Author(s): Borrell, B J
  • Medeiros, M J
  • et al.
Abstract

To test whether variation in muscle efficiency contributes to thermal stability during flight in the orchid bee, Euglossa imperialis, we measured CO2 production, heat loss and flight kinematics at different air temperatures (T-a). We also examined the relationship between wingbeat frequency (WBF) and T-a in five additional species of orchid bees. Mean thoracic temperature (Tth) for Eg. imperialis hovering in a screened insectary and in the field was 39.3+/-0.77degreesC (mean 95% C.I.), and the slope of Tth on T-a was 0.57. Head and abdominal temperature excess ratios declined with T-a, indicating that Eg. imperialis were not increasing heat dissipation from the thorax at high T-a. Elevation of Tth above T-a was correlated with WBF, but Tth alone was not. Estimates of heat production from both respirometry and heat loss experiments decreased 33% as T-a rose from 24 to 34degreesC. Mean muscle efficiency over this temperature range was 18% assuming perfect elastic energy storage and 22% assuming zero elastic energy storage. Both efficiency estimates increased significantly as T-a rose from 24 to 34degreesC. In all six species examined, WBF declined significantly with T-a. These data indicate that hovering orchid bees regulate heat production through changes in wingbeat kinematics and consequent changes in energy conversion by the flight motor. Temperature-dependent variation in elastic energy storage or muscle contraction efficiency or both may contribute to the observed trends.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View