Joint velocity and density reconstruction of the Universe with nonlinear differentiable forward modeling
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Joint velocity and density reconstruction of the Universe with nonlinear differentiable forward modeling

Abstract

Abstract: Reconstructing the initial conditions of the Universe from late-time observations has the potential to optimally extract cosmological information. Due to the high dimensionality of the parameter space, a differentiable forward model is needed for convergence, and recent advances have made it possible to perform reconstruction with nonlinear models based on galaxy (or halo) positions. In addition to positions, future surveys will provide measurements of galaxies' peculiar velocities through the kinematic Sunyaev-Zel'dovich effect (kSZ), type Ia supernovae, the fundamental plane relation, and the Tully-Fisher relation. Here we develop the formalism for including halo velocities, in addition to halo positions, to enhance the reconstruction of the initial conditions. We show that using velocity information can significantly improve the reconstruction accuracy compared to using only the halo density field. We study this improvement as a function of shot noise, velocity measurement noise, and angle to the line of sight. We also show how halo velocity data can be used to improve the reconstruction of the final nonlinear matter overdensity and velocity fields. We have built our pipeline into the differentiable Particle-Mesh FlowPM package, paving the way to perform field-level cosmological inference with joint velocity and density reconstruction. This is especially useful given the increased ability to measure peculiar velocities in the near future.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View