Skip to main content
eScholarship
Open Access Publications from the University of California

Thermal effects in plasma-based accelerators

Abstract

Finite plasma temperature can modify the structure of the wake field, reduce the wave-breaking field, and lead to self-trapped electrons, which can degrade the electron bunch quality in a plasma-based accelerator. A relativistic warm fluid theory is used to describe the plasma temperature evolution and alterations to the structure of a nonlinear periodic wave exited in a warm plasma. The trapping threshold for a plasma electron and the fraction of electrons trapped from a thermal distribution are examined using a single-particle model. Numerical artifacts in particle-in-cell models that can mimic the physics associated with finite momentum spread are discussed.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View