Skip to main content
eScholarship
Open Access Publications from the University of California

Anthropogenic Influences on Tornadic Storms

Abstract

The impact of climate change on severe storms and tornadoes remains uncertain, largely owing to inconsistencies in observational data and limitations of climate models. We performed ensembles of convection-permitting climate model simulations to examine how three tornadic storms would change if similar events were to occur in pre-industrial and future climates. The choice of events includes winter, nocturnal, and spring tornadic storms to provide insight into how the timing and seasonality of storms may affect their response to climate change. Updraft helicity (UH), convective available potential energy (CAPE), storm-relative helicity (SRH), and convective inhibition (CIN) were used to determine the favorability for the three tornadic storm events in the different climate states. We found that from the pre-industrial period to the present, the potential for tornadic storms decreased for the winter event and increased for the nocturnal and spring events. With future climate change, the potential for tornadic storms increased for the winter and nocturnal events in association with increased CAPE, and decreased for the spring event despite greater CAPE.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View