Skip to main content
eScholarship
Open Access Publications from the University of California

Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

Abstract

Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100% DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65% of its initial capacity after 140 cycles at 60 degrees C compared to only 4% loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65%, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View