Skip to main content
eScholarship
Open Access Publications from the University of California

Advances in heavy alkaline earth chemistry provide insight into complexation of weakly polarizing Ra2+, Ba2+, and Sr2+ cations.

Abstract

Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)x-2. Upon isolating radioactive 223Ra from its parent radionuclides (227Ac and 227Th), 223Ra2+ reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)2-(aq) (log KRa(COCO)2- = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)2-(aq)] and many donor atoms [≥11 in Ra(COCO)2-(aq)] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View