Skip to main content
Open Access Publications from the University of California

Low Mach number fluctuating hydrodynamics model for ionic liquids

  • Author(s): Klymko, K
  • Nonaka, A
  • Bell, JB
  • Carney, SP
  • Garcia, AL
  • et al.

We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading to a computationally efficient incompressible formulation. The model uses a Gibbs free-energy functional that includes enthalpy of mixing, interfacial energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-], an extensively studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries the measured double-layer capacitance decreases with voltage, in agreement with theoretical predictions and experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate that the methodology can be used to model electrokinetic flows.

Main Content
Current View