Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Suture Forces for Closure of Transapical Transcatheter Aortic Valve Replacement: A Mathematical Model.

Abstract

Background

Transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of severe aortic stenosis in intermediate, high-risk, and inoperable patients. TAVR has multiple access routes, including transfemoral (TF), transapical (TA), direct aortic (DA), axillary, transcarotid, and transcaval. The most commonly applied algorithm is a TF-first approach, where only when patients are unsuitable for TF are alternatives such as TA considered. An infrequent - but dreaded - risk is left ventricular (LV) apical bleeding from tearing or rupture with the TA approach. With burgeoning transcatheter mitral technology that requires a TA approach, the study aim was to develop a mathematical model to determine suture forces for TA closure.

Methods

Preoperative cine-cardiac magnetic resonance imaging (MRI) was used to acquire three-dimensional (3D) LV geometry at end-systole and end-diastole. Endocardial and epicardial boundaries were manually contoured using MeVisLab, a surface reconstruction software. 3D surfaces of endocardium and epicardium were reconstructed, and surfaces at end-systole were used to create a 3D LV finite element (FE) mesh. TA access was mimicked by developing a 10-mm defect within the LV FE model. The LV apex was closed using a virtual suture technique in FE analysis with the application of two virtual sutures. After virtual closure, a FE analysis was performed of LV model diastolic filling and systolic contraction.

Results

Proof of concept was achieved to develop an LV transapical access site and perform FE analysis to achieve closure. The FE method of virtual suture technique successfully approximated the LV apical defect. The peak axial forces on virtual sutures at end-diastole and end-systole were 0.445N and 0.736N, respectively.

Conclusions

A LV TA access model was mathematically developed that could be used to evaluate the suture tension of the TA closure process. Further development of this approach may be useful to risk-stratify patients in the future for LV apical tearing. Video 1: Cine cardiac magnetic resonance imaging of the left ventricle. Video 2: Slow motion animation of left ventricular baseline simulation. Video 3: Animation of the virtual suturing process.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View