Seamless high-Q microwave cavities for multimode circuit QED
Skip to main content
Open Access Publications from the University of California

Seamless high-Q microwave cavities for multimode circuit QED


Multimode cavity quantum electrodynamics ---where a two-level system interacts simultaneously with many cavity modes---provides a versatile framework for quantum information processing and quantum optics. Due to the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of $2$ ms and cooperativities of $0.5-1.5\times10^9$ across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View