The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1
Skip to main content
eScholarship
Open Access Publications from the University of California

The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1

Abstract

Abstract We analyse the large-scale clustering in Fourier space of emission line galaxies (ELG) from the Data Release 16 of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. The ELG sample contains 173,736 galaxies covering 1,170 square degrees in the redshift range 0.6 < z < 1.1. We perform a BAO measurement from the post-reconstruction power spectrum monopole, and study redshift space distortions (RSD) in the first three even multipoles. Photometric variations yield fluctuations of both the angular and radial survey selection functions. Those are directly inferred from data, imposing integral constraints which we model consistently. The full data set has only a weak preference for a BAO feature (1.4σ). At the effective redshift zeff = 0.845 we measure $D_{\rm V}(z_{\rm eff})/r_{\rm drag} = 18.33_{-0.62}^{+0.57}$, with DV the volume-averaged distance and rdrag the comoving sound horizon at the drag epoch. In combination with the RSD measurement, at zeff = 0.85 we find $f\sigma _8(z_{\rm eff}) = 0.289_{-0.096}^{+0.085}$, with f the growth rate of structure and σ8 the normalisation of the linear power spectrum, $D_{\rm H}(z_{\rm eff})/r_{\rm drag} = 20.0_{-2.2}^{+2.4}$ and DM(zeff)/rdrag = 19.17 ± 0.99 with DH and DM the Hubble and comoving angular distances, respectively. These results are in agreement with those obtained in configuration space, thus allowing a consensus measurement of fσ8(zeff) = 0.315 ± 0.095, $D_{\rm H}(z_{\rm eff})/r_{\rm drag} = 19.6_{-2.1}^{+2.2}$ and DM(zeff)/rdrag = 19.5 ± 1.0. This measurement is consistent with a flat ΛCDM model with Planck parameters.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View