Skip to main content
eScholarship
Open Access Publications from the University of California

Atherosclerosis exacerbates arrhythmia following myocardial infarction: Role of myocardial inflammation

  • Author(s): De Jesus, NM
  • Wang, L
  • Herren, AW
  • Wang, J
  • Shenasa, F
  • Bers, DM
  • Lindsey, ML
  • Ripplinger, CM
  • et al.

Published Web Location

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277908/
No data is associated with this publication.
Abstract

© 2015 Heart Rhythm Society. All rights reserved. BACKGROUND: Atherosclerotic animal models show increased recruitment of inflammatory cells to the heart after myocardial infarction (MI), which impacts ventricular function and remodeling. OBJECTIVE The purpose of this study was to determine whether increased myocardial inflammation after MI also contributes to arrhythmias. METHODS: MI was created in 3 mouse models: (1) atherosclerotic (apolipoprotein E deficient [ApoE-/-] on atherogenic diet, n = 12); (2) acute inflammation (wild-type [WT] given daily lipopolysaccharide [LPS] 10 μg/day, n = 7); and (3) WT (n = 14). Shamoperated (n = 4) mice also were studied. Four days post-MI, an inflammatory protease-activatable fluorescent probe (Prosense680) was injected intravenously to quantify myocardial inflammation on day 5. Optical mapping with voltage-sensitive dye was performed on day 5 to assess electrophysiology and arrhythmia susceptibility. RESULTS: Inflammatory activity (Prosense680 fluorescence) was increased approximately 2-fold in ApoE+MI and LPS+MI hearts vs WT+MI (P<.05) and 3-fold vs sham (P<.05). ApoE+MI and LPS+MI hearts also had prolonged action potential duration, slowed conduction velocity, and increased susceptibility to pacing-induced arrhythmias (56% and 71% vs 13% for WT+MI and 0% for sham, respectively, P<.05, for ApoE+MI and LPS+MI groups vs both WT+MI and sham). Increased macrophage accumulation in ApoE+MI and LPS+MI hearts was confirmed by immunofluorescence. Macrophages were associated with areas of connexin43 (Cx43) degradation, and a 2-fold decrease in Cx43 expression was found in ApoE+MI vs WT+MI hearts (P<.05). ApoE+MI hearts also had a 3-fold increase in interleukin-1β expression, an inflammatory cytokine known to degrade Cx43. CONCLUSION: Underlying atherosclerosis exacerbates post-MI electrophysiological remodeling and arrhythmias. LPS+MI hearts fully recapitulate the atherosclerotic phenotype, suggesting myocardial inflammation as a key contributor to post-MI arrhythmia.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item