- Main
Dark matter, dark radiation and gravitational waves from mirror Higgs parity
Published Web Location
https://doi.org/10.1007/JHEP02(2020)078Abstract
© 2020, The Author(s). An exact parity replicates the Standard Model giving a Mirror Standard Model, SM ↔ SM′. This “Higgs Parity” and the mirror electroweak symmetry are spontaneously broken by the mirror Higgs, 〈H′〉 = v′ ≫ 〈H〉, yielding the Standard Model Higgs as a Pseudo-Nambu-Goldstone Boson of an approximate SU (4) symmetry, with a quartic coupling λSM(v′) ∼ 10−3. Mirror electromagnetism is unbroken and dark matter is composed of e′ and e¯ ′. Direct detection may be possible via the kinetic mixing portal, and in unified theories this rate is correlated with the proton decay rate. With a high reheat temperature after inflation, the et dark matter abundance is determined by freeze-out followed by dilution from decays of mirror neutrinos, ν′→ ℓH. Remarkably, this requires v′∼ (108–1010) GeV, predicting a Higgs mass of 123 ± 3 GeV at 1σ and a Standard Model neutrino mass of (10−2–10−1) eV, consistent with observed neutrino masses. The mirror QCD sector exhibits a first order phase transition producing gravitational waves that may be detected by future observations. Mirror glueballs decay to mirror photons giving dark radiation with ∆Neff∼ 0.03–0.4. With a low reheat temperature after inflation, the e′ dark matter abundance is determined by freeze-in from the SM sector by either the Higgs or kinetic mixing portal.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-