Skip to main content
Open Access Publications from the University of California

Laser wakefield simulation using a speed-of-light frame envelope model


Simulation of laser wakefield accelerator (LWFA) experiments is computationally intensive due to the disparate length scales involved. Current experiments extend hundreds of laser wavelengths transversely and many thousands in the propagation direction, making explicit PIC simulations enormously expensive and requiring massively parallel execution in 3D. We can substantially improve the performance of laser wakefield simulations by modeling the envelope modulation of the laser field rather than the field itself. This allows for much coarser grids, since we need only resolve the plasma wavelength and not the laser wavelength, and therefore larger timesteps. Thus an envelope model can result in savings of several orders of magnitude in computational resources. By propagating the laser envelope in a frame moving at the speed of light, dispersive errors can be avoided and simulations over long distances become possible. Here we describe the model and its implementation, and show simulations and benchmarking of laser wakefield phenomena such as channel propagation, self-focusing, wakefield generation, and downramp injection using the model.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View