Modeling and Simulation of Operational Faults of HVAC Systems Using Energyplus:
Skip to main content
eScholarship
Open Access Publications from the University of California

Modeling and Simulation of Operational Faults of HVAC Systems Using Energyplus:

  • Author(s): Zhang, Rongpeng
  • Hong, Tianzhen
  • et al.
Abstract

HVAC operations play a significant role among various driving factors to improve energy performance of buildings. Extensive researches have been conducted on the design efficiencies and control strategies of HVAC system, but very few focused on the impacts of its operational faults on the building energy efficiency. Modeling and simulation of operational faults can lead to better understandings of the fault impacts and thus support decision making of timely fault corrections which can further benefit the efficient system operation, improve the indoor thermal comfort, and prolong the equipment service life. Fault modeling is also critical to achieve more accurate and reliable model calibrations. This paper introduces the modeling and simulation of operational faults using EnergyPlus, a comprehensive whole building performance simulation tool. The paper discusses the challenges of operational fault modeling, and compares three approaches to simulate operational faults using EnergyPlus. The paper also introduces the latest development of native fault objects within EnergyPlus. As an example, EnergyPlus version 8.4 is used to investigate the impacts of the integrated thermostat and humidistat faults in a typical office building across several U.S. climate zones. The results demonstrate that the faults create significant impacts on the building energy performance as well as occupant thermal comfort. At last, the paper introduces the future development plan of EnergyPlus for the further improvement of its fault modeling capability.

Main Content
Current View