Skip to main content
Open Access Publications from the University of California

On the binary expansions of algebraic numbers


Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number \#(vbar y vbar, N) of 1-bits in the expansion of vbar y vbar through bit position N satisfies \#(vbar y vbar, N) > CN^1/D for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals \sum_n \geq 0 1/2^f(n) where theinteger-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number \sum_n \geq 01/2^2^n, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = \sum_n \geq 01/2^n^2 has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View