Skip to main content
Open Access Publications from the University of California

Energy relaxation rate and its mesoscopic fluctuations in quantum dots


We analyze the applicability of the Fermi-golden-rule description of quasiparticle relaxation in a closed diffusive quantum dot with electron-electron interaction. Assuming that single-particle levels are already resolved but the initial stage of quasiparticle disintegration can still be described by a simple exponential decay, we calculate the average inelastic energy relaxation rate of single-particle excitations and its mesoscopic fluctuations. The smallness of mesoscopic fluctuations can then be used as a criterion for the validity of the Fermi-golden-rule description. Technically, we implement the real-space Keldysh diagram technique, handling correlations in the quasi-discrete spectrum non-perturbatively by means of the non-linear supersymmetric sigma model. The unitary symmetry class is considered for simplicity. Our approach is complementary to the lattice-model analysis of Fock space: though we are not able to describe many-body localization, we derive the exact lowest-order expression for mesoscopic fluctuations of the relaxation rate, making no assumptions on the matrix elements of the interaction. It is shown that for the quasiparticle with the energy ε on top of the thermal state with the temperature T, fluctuations of its energy width become large and the Fermi-golden-rule description breaks down at max{ε,T}~δg, where δ is the mean level spacing in the quantum dot, and g is its dimensionless conductance.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View