Skip to main content
eScholarship
Open Access Publications from the University of California

Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone. Part 3: Production Simulation Results

  • Author(s): Reagan, Matthew T
  • Queiruga, Alejandro F
  • Moridis, George J
  • et al.
Abstract

© 2019, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. The TOUGH+Millstone simulator has been developed for the analysis of coupled flow, thermal and geomechanical processes associated with the formation and/or dissociation of CH 4-hydrates in geological media. It is composed of two constituent codes: (a) a significantly enhanced version of the TOUGH+Hydrate simulator, v2.0, that accounts for all known flow, physical, thermodynamic and chemical processes associated with the evolution of hydrate-bearing systems and includes the most recent physical properties relationships, coupled seamlessly with (b) Millstone v1.0, a new code that addresses the conceptual, computational and mathematical shortcomings of earlier codes used to describe the geomechanical response of these systems. The capabilities of the TOUGH+Millstone code are demonstrated in the simulation and analysis of the system flow, thermal, and geomechanical behavior during gas production from a realistic complex offshore hydrate deposit. In the third paper of this series, we apply the simulators described in parts 1 and 2 to a problem of gas production from a complex, multilayered system of hydrate-bearing sediments in an oceanic environment. We perform flow simulations of constant-pressure production via a vertical well and compare those results to a coupled flow-geomechanical simulation of the same process. The results demonstrate the importance of fully coupled geomechanics when modeling the evolution of reservoir properties during production.

Main Content
Current View