Skip to main content
eScholarship
Open Access Publications from the University of California

Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization

Abstract

Non-fused ring electron acceptors (NFREAs) potentially have lower synthetic costs than their fused counterparts. However, the low backbone planarity and the presence of bulky substituents adversely affect the crystallinity of NFREAs, impeding charge transport and the formation of bicontinuous morphology in organic solar cells. Here we show that a binary solvent system can individually control the crystallization and phase separation of the donor polymer (for example, D18) and the NFREA (for example, 2BTh-2F-C2). We select solvents such as chloroform and o-xylene that evaporate at different temperatures and rates and have different solubility for D18. Upon evaporation of chloroform, D18 starts to assemble into fibrils. Then, the evaporation of o-xylene induces the rapid formation of a fibril network that phase segregates 2BTh-2F-C2 into pure domains and leads to a bicontinuous morphology. The well-defined interpenetrating network morphology affords an efficiency of 19.02% on small-area cells and 17.28% on 1 cm2 devices.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View