Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Altered precipitation has asymmetric impacts on annual plant communities in warm and cool growing seasons

Abstract

While altered precipitation regimes can greatly impact biodiversity and ecosystem functioning, we lack a comprehensive view of how these impacts are mediated by changes to the seasonality of precipitation (i.e., whether it rains more/less in one season relative to another). Over 2 years, we examined how altered seasonal precipitation influenced annual plant biomass and species richness, Simpson’s diversity, and community composition of annual plant communities in a dryland ecosystem that receives both winter and summer rainfall and has distinct annual plant communities in each season. Using a rainfall exclusion, collection, and distribution system, we excluded precipitation and added water during each season individually and compared responses to control plots which received ambient summer and winter precipitation. In control plots, we found five times greater annual plant biomass, twice as many species, and higher diversity in winter relative to summer. Adding water increased annual plant biomass in summer only, did not change richness or diversity in either summer or winter, and modestly shifted community composition. Excluding precipitation in either season reduced annual plant biomass, richness, and Simpson’s diversity. However, in the second winter season, biomass was higher in the plots where precipitation was excluded in the previous summer seasons suggesting that reduced productivity in the summer may facilitate biomass in the winter. Our results suggest that increased precipitation in summer may have stronger short-term impacts on annual plant biodiversity and ecosystem function relative to increased winter precipitation. In contrast, decreasing precipitation may have ubiquitous negative effects on annual plants across both summer and winter but may lead to increased biomass in the following off-seasons. These patterns suggest that annual plant communities exhibit asymmetries in their community and ecosystem responses to altered seasonal precipitation and that considering the seasonality of precipitation is important for predicting the effects of altered precipitation regimes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View