- Main
Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements
Published Web Location
https://doi.org/10.1016/j.neuron.2021.10.002Abstract
The human hand is unique in the animal kingdom for unparalleled dexterity, ranging from complex prehension to fine finger individuation. How does the brain represent such a diverse repertoire of movements? We evaluated mesoscale neural dynamics across the human "grasp network," using electrocorticography and dimensionality reduction methods, for a repertoire of hand movements. Strikingly, we found that the grasp network represented both finger and grasping movements alike. Specifically, the manifold characterizing the multi-areal neural covariance structure was preserved during all movements across this distributed network. In contrast, latent neural dynamics within this manifold were surprisingly specific to movement type. Aligning latent activity to kinematics further uncovered distinct submanifolds despite similarities in synergistic coupling of joints between movements. We thus find that despite preserved neural covariance at the distributed network level, mesoscale dynamics are compartmentalized into movement-specific submanifolds; this mesoscale organization may allow flexible switching between a repertoire of hand movements.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-