Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Elementary motion sequence detectors in whisker somatosensory cortex.

  • Author(s): Laboy-Juárez, Keven J
  • Langberg, Tomer
  • Ahn, Seoiyoung
  • Feldman, Daniel E
  • et al.
Abstract

How the somatosensory cortex (S1) encodes complex patterns of touch, such as those that occur during tactile exploration, is poorly understood. In the mouse whisker S1, temporally dense stimulation of local whisker pairs revealed that most neurons are not classical single-whisker feature detectors, but instead are strongly tuned to two-whisker sequences that involve the columnar whisker (CW) and one specific surround whisker (SW), usually in a SW-leading-CW order. Tuning was spatiotemporally precise and diverse across cells, generating a rate code for local motion vectors defined by SW-CW combinations. Spatially asymmetric, sublinear suppression for suboptimal combinations and near-linearity for preferred combinations sharpened combination tuning relative to linearly predicted tuning. This resembles computation of motion direction selectivity in vision. SW-tuned neurons, misplaced in the classical whisker map, had the strongest combination tuning. Thus, each S1 column contains a rate code for local motion sequences involving the CW, thus providing a basis for higher-order feature extraction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View