Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The Fascinating and Complex Dynamics of Geyser Eruptions


Geysers episodically erupt liquid and vapor. Despite two centuries of scientific study, basic questions persist-why do geysers exist? What determines eruption intervals, durations, and heights? What initiates eruptions? Through monitoring eruption intervals, analyzing geophysical data, taking measurements within geyser conduits, performing numerical simulations, and constructing laboratory models, some of these questions have been addressed. Geysers are uncommon because they require a combination of abundant water recharge, magmatism, and rhyolite flows to supply heat and silica, and large fractures and cavities overlain by low-permeability materials to trap rising multiphase and multicomponent fluids. Eruptions are driven by the conversion of thermal to kinetic energy during decompression. Larger and deeper cavities permit larger eruptions and promote regularity by isolating water from weather variations. The ejection velocity may be limited by the speed of sound of the liquid + vapor mixture.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View