Skip to main content
Open Access Publications from the University of California

High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal-Organic Frameworks

  • Author(s): You, B
  • Jiang, N
  • Sheng, M
  • Gul, S
  • Yano, J
  • Sun, Y
  • et al.

Published Web Location
No data is associated with this publication.

© 2015 American Chemical Society. The design of active, robust, and nonprecious electrocatalysts with both H2and O2evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Herein, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoPx(a mixture of CoP and Co2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and high nitrogen content of ZIF (a subclass of metal-organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m2g-1and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm-2at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm-2at 2.0 V, superior to that of Pt/IrO2couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoPxencapsulated within N-doped carbon matrices.

Item not freely available? Link broken?
Report a problem accessing this item