Skip to main content
eScholarship
Open Access Publications from the University of California

Solving Coupled Cluster Equations by the Newton Krylov Method.

  • Author(s): Yang, Chao
  • Brabec, Jiri
  • Veis, Libor
  • Williams-Young, David B
  • Kowalski, Karol
  • et al.
Abstract

We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.

Main Content
Current View