Skip to main content
Download PDF
- Main
Differential expression of genes and differentially perturbed pathways associated with very high evening fatigue in oncology patients receiving chemotherapy
Published Web Location
https://doi.org/10.1007/s00520-017-3883-5Abstract
Purpose
Fatigue is the most common symptom associated with cancer and its treatment. Investigation of molecular mechanisms associated with fatigue in oncology patients may identify new therapeutic targets. The objectives of this study were to evaluate the relationships between gene expression and perturbations in biological pathways and evening fatigue severity in oncology patients who received chemotherapy (CTX).Methods
The Lee Fatigue Scale (LFS) and latent class analysis were used to identify evening fatigue phenotypes. We measured 47,214 ribonucleic acid transcripts from whole blood collected prior to a cycle of CTX. Perturbations in biological pathways associated with differential gene expression were identified from public data sets (i.e., Kyoto Encyclopedia Gene and Genomes, BioCarta).Results
Patients were classified into Moderate (n = 65, mean LFS score 3.1) or Very High (n = 195, mean LFS score 6.4) evening fatigue groups. Compared to patients with Moderate fatigue, patients with Very High fatigue exhibited differential expression of 29 genes. A number of the perturbed pathways identified validated prior mechanistic hypotheses for fatigue, including alterations in immune function, inflammation, neurotransmission, energy metabolism, and circadian rhythms. Based on our findings, energy metabolism was further divided into alterations in carbohydrate metabolism and skeletal muscle energy. Alterations in renal function-related pathways were identified as a potential new mechanism.Conclusions
This study identified differential gene expression and perturbed biological pathways that provide new insights into the multiple and likely inter-related mechanisms associated with evening fatigue in oncology patients.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%